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1. Introduction

Hydrodynamics [1] provides a universal description of the long range, long time-scale be-

havior of a wide variety of thermal systems. The hydrodynamic quantities are those for

which small perturbations from equilibrium have relaxation times which diverge as their

wavelength diverges. As a result, hydrodynamics has been formulated as a classical effec-

tive field theory with various fields, typically the conserved quantities, playing the role of

fundamental degrees of freedom. Hydrodynamic behavior has been seen to arise from finite

temperature quantum field theory [2].

At the same time however, one feature that sets aside relativistic quantum field theories

is the existence of quantum anomalies, which cause some classically conserved quantities

to be non-conserved. An unsolved problem is how to incorporate the effects of quan-

tum anomalies into the hydrodynamics description of a thermal field theory which contain

anomalies. In a QCD plasma, the hydrodynamic theory should reproduce the three-point

correlation functions including the anomalous part (an example of such correlation func-

tions is that of the axial vector, vector and baryon currents). Another example is the

massless QED plasma (or the QED plasma at such high temperatures so that the mass

of the electron can be neglected). In this case, magnetohydrodynamics has to be enlarged

to incorporate the axial current j5µ = ψ̄γµγ5ψ. Although this current is not conserved,

∂µj5µ ∼ E · B, at large distances the total axial charge should change slowly because the

conducting plasma cannot support a large long-distance electric field E.
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In this paper, we consider a simpler problem where anomalies enter the hydrodynamic

equations already at the linearized level. Namely, we consider a theory with a set of global

conserved charges ja for which the triple correlators contain anomalous contributions. We

then turn on an external magnetic field coupled to one of the global charges. An example

of such a system is high-temperature QCD in a very large magnetic field. Now anomalies

appear already at the level of two-point correlators, and hence should be manifested in the

linearized hydrodynamic equations.

We shall argue that in the presence of a background magnetic field coupled to some

conserved charge, the constitutive equation for the currents is modified in the presence of

quantum anomalies. In an anomalous theory, any current ja participating in an anomaly

now receives a contribution

ja ∝ dabcBbρc. (1.1)

So, in addition to the diffusion and Ohmic current, there is a new, dissipationless con-

tribution proportional to the magnetic field and a density of charges. It is important to

note that this modification of the constitutive relation occurs regardless of whether the

current itself is anomalously non-conserved. For example, in the massless QED mentioned

above, both the axial vector current and the electromagnetic vector current receive this

new term in their constitutive equations. This result has been obtained previously, by

Alekseev, Cheianov, and Frohlich, for the cases of 2D field theory, and massless QED [3].

In this work, we will confirm their result, using different methods, as well as extending our

analysis to a wider variety of systems.

We use two complimentary approaches to elucidate the impact of quantum anomalies

on the hydrodynamic regime. The first approach uses the gauge/gravity duality, in which

the hydrodynamic behavior of currents in 4D thermal gauge theories is obtained from the

dynamics of the dual Yang-Mills fields on black-brane backgrounds in higher-dimensions.

In this approach the 4D quantum anomaly has a very simple dual description in the higher-

dimensional theory — it corresponds to the 5D Chern-Simons term in the gauge action.

This approach applies only to strongly coupled gauge theories with gravity duals, in par-

ticular, to N = 4 super-Yang-Mills theory in the large-N , large t’Hooft coupling regime.

In the second approach, which is appropriate in the weak-coupling regime, we use a sin-

gle particle spectrum treatment, similar to the “level-crossing” pictures usually used for

explaining anomalies [4], to examine the behavior of currents in a weakly coupled abelian

gauge theory with axial anomaly. In both cases we perform our analysis in the background

of a constant, homogeneous magnetic field and obtain the same additional term in the

constitutive relation for an anomalous current. We then argue that the form of the new

term in the constitutive equation that we found is exact, i.e., independent of the strength

of interactions.

The paper is organized as follows. In the first section, we use simple symmetry ar-

guments to motivate the inclusion of terms of the form in [3] in the hydrodynamics of

anomalous theories. In the second section, we explore the R-charge anomaly in the hydro-

dynamic regime of N = 4 SYM using a “membrane paradigm” treatment of the dual 5D

theory which is very similar to that used in [5] to examine non-anomalous hydrodynamics
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in theories with gravitational duals. In the third section we present a quasiparticle analysis

of the axial anomaly in massless QED at finite T and finite (electron) chemical potential.

Next we present our argument for the universality of this result. This argument is based on

the equilibrium form of a charge distribution in a system with non- vanishing gauge field.

In section four, we consider the application of our results to QCD at high temperature and

strong magnetic field. Then, we conclude.

2. Symmetry considerations

The simplest model where the problem of anomalous hydrodynamics appears is QCD with

two massless quark flavors. The conserved currents in the theory are the isospin current

jaµ = q̄γµ τa

2 q, the axial isospin current jaµ = q̄γµγ5 τa

2 q, and the and the baryon current

jµ
B = q̄γµq. We turn on a background magnetic field B coupled to the baryon current and

discuss the hydrodynamic behavior of the isospin and the axial isospin currents.

In the absence of the magnetic field B and at temperatures higher than the chiral

phase transition, the hydrodynamic equations for the vector and axial charge densities ρa

and ρ5a are the diffusion equations which can be written as the conservation laws

ρ̇a + ∇ · ja = 0, ρ̇5a + ∇ · j5a = 0, (2.1)

coupled with the constitutive relations

ja = −D∇ρa, j5a = −D∇ρ5a (2.2)

We recall that the form of the constitutive equations are dictated by the symmetries (ro-

tational, C and P) and by the fact that we limit ourselves, in linearized hydrodynamics, to

terms linear in fields with the lowest number of spatial derivatives.

However, in the presence of the external magnetic field B, it is possible to write

additional linear terms

ja = −D∇ρa + cBρ5a, j5a = −D∇ρ5a + c′Bρa (2.3)

The equations are obviously rotationally invariant. To see that they respect C and P

invariance one recalls that under C jµ → −jµ, j5µ → j5µ, and B → −B, and under P

ρ → ρ, j → −j, ρ5 → −ρ5, j5 → j5, and B → B.

The coefficients c and c′ are not fixed by symmetries. In the next two sections we

compute these coefficients in some simple theories.

3. An approach from gauge/gravity duality

3.1 Introduction

In this section we follow an analysis developed in ref. [5], which employed the gauge/gravity

duality and the black-hole “membrane paradigm” to demonstrate hydrodynamic behavior

in a variety of finite-temperature theories with holographic gravitational duals. We will

work with the particular case of an N = 4 super-Yang-Mills theory, believed dual to a stack
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of black D3 branes in AdS5 × S5. (The hydrodynamic behavior of this theory has been

found directly.) For the sake of completeness we will repeat many of the arguments used

in ref. [5]. This repetition also serves to demonstrate explicitly where our assumptions do

or do not differ from those of the previous work.

The AdS5 metric for our black brane configuration is,

ds2
5 =

(πTR)2

u

[

−(1 − u2)dt2 +
3

∑

i=1

dx2
i

]

+
R2

4u2(1 − u2)
du2. (3.1)

Note the use of the dimensionless radial coordinate, u, which is related to the usual radial

coordinate r and horizon location r0 through u = r2
0/r

2. The theory possesses SU(4)

conserved R-charges, whose correlation functions are computable using AdS/CFT. The the

5D bulk action of the gauge field Aa
µ dual to the R-current, complete with Chern-Simons

term is,

S = − 1

4g2
GS

∫

d5x
√−gF a

µνFµνa − N2 − 1

96π2

∫

d5x dabcεµνλρσAa
µ∂νAb

λ∂ρA
c
σ. (3.2)

In 5D, the Chern-Simons (CS) term is cubic in fields. Thus, two point correlation func-

tions can be calculated without this term, but three and higher n-point functions receive

anomalous contributions from the CS term. The three-point functions can, in principle, be

computed from the closed-time-path AdS/CFT prescription. In this paper, we compute

two-point functions in the presence of a background magnetic field — which couples to the

two-point functions through the CS term in the 5D action,

In ref. [5] the general idea, originated from the black-hole membrane paradigm, begins

with defining conserved currents in terms of field tensors evaluated on a stretched horizon.

The prescription for how to define these currents is lifted directly from the membrane

paradigm [6]. Then, one takes the long wavelength limit of the field equations in order

to derive the constitutive equation for the currents. It was shown in ref. [5] that the 5D

Maxwell equations imply Fick’s law from boundary currents, with a diffusion constant

matching that found by direct AdS/CFT calculation in the case of N = 4 SYM.

Working in the classical regime of the higher dimensional theory, we use the abelian

field strength and ignore the fabc terms in the Yang-Mills action. The modified Maxwell

equations obtained from our action are,

1

g2
SG

√−g
∂ν [

√−gF aµν ] +
N2 dabc

128π2
√−g

εµλνρσF b
λνF c

ρσ = 0. (3.3)

In order to simplify our task, let us turn on a constant, homogeneous background mag-

netic field, B, in the 4D theory and discuss charge diffusion on this background. Turning

on B in 4D means imposing a boundary condition that the 5D field strength approach B

as u → 0. One can see that these equations support a constant magnetic field in the three

space-like dimensions perpendicular to the branes,

−1

2
εijkFjk = Bi. (3.4)
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We will neglect the back-reaction of this field on the background metric. This is justified

when B ¿ T 2. Later on, we will work in A5 = 0 gauge and make use of a partial Fourier

decomposition of the Aµ into plane waves parallel to the horizon with dependence on the

fifth coordinate left explicit:

Aµ(u, ω,q) =

∫

d4xAµ(u, t,x)eiω t−iq·x.

Throughout, we will use the notation

B̃ =
B

2(πT )2
; ω̃ =

ω

2πT
; q̃ =

q

2πT
.

In addition, we will make the assumptions ω̃ ∼ q̃2 ∼ B̃2 and q̃ ¿ 1 which in the end are

seen to be consistent with the modified diffusion equation we obtain.

The solution to the field equations describing a constant homogeneous magnetic field,

together with the metric (3.1), defines the 5D classical background about which we linearize

in small perturbations. The linearized Maxwell equations become:

1

g2
SG

√−g
∂ν [

√−gg5ρgνσF a
ρσ] − N2 dabc

16π2
√−g

Bb
i F

c
ti = 0, (3.5)

1

g2
SG

√−g
∂ν [

√−ggtρgνσF a
ρσ] +

N2 dabc

16π2
√−g

Bb
i F

c
5i = 0, (3.6)

1

g2
SG

√−g
∂ν [

√−ggiρgνσF a
ρσ ] − N2 dabc

16π2
√−g

Bb
i F

c
5t = 0. (3.7)

In a theory with anomaly, the definition of current becomes ambiguous. We shall

require that all currents be gauge invariant under the abelian subgroup of SU(4) singled

out by the magnetic field. Thus, we employ the regularization where anomalies appear only

in R-charge currents for which no external gauge field is turned on. In this regularization

the divergence of an anomalous current is [7]:

∂µjµ
a = dabc N2 − 1

128π2
εαβγδF b

αβF c
γδ . (3.8)

In ref. [5] the radial Maxwell equation, (3.5) is found to function as a conservation equation

for the membrane paradigm currents. In our case, we define currents for which the radial

Maxwell equation serves as the Adler-Bell-Jackiw anomaly equation, (3.8). Ultimately, we

will show that when we take

jt
a = −

√−g5D

g2
SG

F 5t
a |ush

, (3.9)

ji
a = −

√−g5D

g2
SG

(F 5i
a − dabcB̃i

bF
5t
c )|ush

. (3.10)

to define the currents for our system, equation (3.8) is properly satisfied. One can already

see that when B = 0 these currents are conserved by the Maxwell equation. The second

term on the right hand side of (3.10) is a modification to Fick’s law, arising from the

presence of the Chern-Simons term in the action.
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3.2 Analysis

We now embark on our study of linearized perturbations about our solution. Our general

strategy will be to demonstrate the same two essential facts in [5]. First, as a direct result

of incoming wave boundary conditions at the horizon

F5i(ush) ∝ Fti(ush).

Second, in the hydrodynamic regime

Fti(ush) ≈ −∂iAt(ush). (3.11)

Our analysis differs from [5] - and not only by our inclusion of new terms in the equations

of motion and our accommodation of a background B field. We also must employ different

boundary conditions on At in order to allow for a non-vanishing E in the boundary theory.

In [5], At → 0 at the boundary leads, through (3.11) to Fti ≈ −∂iF5t, which supplies the

diffusion term. In our case, a non-zero At(u = 0) leads, in the same manner, to diffusion

and Ohmic terms in the constitutive relation, as well as an E · B non-conservation term

for an anomalous current.

We make use of three Maxwell equations (depending on whether the free index is

spatial, temporal, or radial) plus two Bianchi Identities:

∂tF
a
5t − (1 − u2)∂jF

a
5j − dabcB̃b

jF
c
tj = 0, (3.12)

∂5F
a
5t −

1

(2πT )2u(1 − u2)
∂jF

a
tj + dabcB̃b

jF
c
5j = 0, (3.13)

∂5[(1 − u2)F a
5i] −

1

(2πT )2u(1 − u2)
∂tF

a
ti −

1

(2πT )2u
∂jF

a
ij + dabcB̃b

i F
c
5t = 0, (3.14)

∂tF5j − ∂jF5t − ∂5Ftj = 0, (3.15)

∂iFtj − ∂jFti − ∂tFij = 0. (3.16)

As in [5] a single wave equation for Fti can be obtained in the near horizon limit.

Combining (3.15) with (3.14) and (3.12) respectively we find

∂2
t F a

ti

(2πT )2u(1 − u2)
− ∂5[(1 − u2)(∂iF

a
5t + ∂5F

a
ti)] +

∂j∂tFij

(2πT )2u
− dabcB̃b

i ∂tF
c
5t = 0, (3.17)

∂2
t F a

5t − (1 − u2)∂j(∂jF
a
5t + ∂5F

a
tj) + dabcB̃b

j∂tF
c
tj = 0. (3.18)

Near horizon, these equations simplify significantly. We proceed under the assumption that

all three terms of (3.12) are of the same degree of singularity as we approach the horizon,

and check the consistency of this assumption after the fact. This allows us to neglect ∂2
j F5t

in (3.18) and, passing to momentum space, we find

F a
5t ∼ −i(1 − u2)

q

ω2
∂5F

a
tj +

1

ω2
dabcB̃b

j∂tF
c
tj . (3.19)

It then follows that for 1−u ¿ ω2/q2 the F5t terms in (3.17) can be omitted. The Bianchi

identity (3.16) indicates that the Fij term can be omitted as well, and we obtain a wave

equation for Fti:

∂2
t Fti − (2πT )2u(1 − u2)∂5[(1 − u2)∂5F

a
ti] = 0. (3.20)

– 6 –
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Near horizon, this is solved by

Fti(u, t) = [αi(1 − u)
iω̃
2 + βi(1 − u)−

iω̃
2 ]eiωt. (3.21)

If we specify incoming wave boundary conditions at the horizon, only the first term

can be allowed to contribute, and taking time and radial derivatives of the last equation

gives us

∂tF
a
ti − (4πT )(1 − u)∂5Fti = 0. (3.22)

Bianchi identity (3.15) then indicates, through (3.19) that

∂t

[

F5i −
Fti

(4πT )(1 − u)

]

= 0. (3.23)

Since finite energy solutions must decay with time, we have

F5i =
Fti

(4πT )(1 − u)
. (3.24)

Note that our results for Fti and F5i are consistent with the assertion that all terms

of (3.12) are comparably divergent as we approach the horizon. We have now established a

relationship between F5i ⊂ ji and Fti. To demonstrate a modified Fick’s law, we must still

relate this to a gradient of F5t. This is particularly straight forward in the A5 = 0 gauge,

as F5t = ∂5At. Below, we have separated Ai into two pieces: Ai = A∗
i (x) + Ai(u, t,x)

where A∗
i gives rise to the constant magnetic field, and Ai(u, t,x) is the arbitrarily weak

perturbation about the classical background. In the hydrodynamic regime, and for a weak

enough magnetic field, it is possible to find solutions for At(u) and Ai(u), perturbatively

in ω̃, q̃, and B̃, such that
At|sh − At|0

∂5At|sh
≈ constant, (3.25)

while

Fti|sh ≈ −∂iAt|sh. (3.26)

Specifically, we take q̃ ¿ 1 and ω̃ ∼ q̃2 ∼ B̃2.

Finding the perturbative solutions to first order in the small quantities is no simple

matter for general dabc, but it will not be necessary for our purposes. We will simply show

that the leading terms of both solutions satisfy the above conditions, determine the value

of the constant, and demonstrate that corrections to these leading terms are small enough

that the procedure is valid. As in [5] we take the stretched horizon to be close enough to

the actual horizon to satisfy 1 − ush ¿ 1 without being exponentially close:

−ω̃ ln(1 − ush) ¿ 1. (3.27)

Then, all the way down to the stretched horizon we can take

(1 − u)
iω̃
2 ≈ 1. (3.28)

– 7 –
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To isolate dependence on radial coordinate, we write the momentum space Maxwell

equations, using a prime to denote radial differentiation:

ω Aa′
t + (1 − u2)qjA

a′
j + dabcB̃b

j(qjA
c
t + ωAc

j) = 0, (3.29)

Aa′′
t − 1

(2πT )2u(1 − u2)
q(qAa

t + ωAa
j ) + dabcB̃b

jA
c′
j = 0, (3.30)

[(1 − u2)Aa′
i ]′ +

ω

(2πT )2u(1 − u2)
(qAa

t + ωAa
j )

+
qj

(2πT )2u
(qiA

a
j − qjA

a
i ) + dabcB̃b

i A
c′
t = 0. (3.31)

Then, solving equations (3.30) and (3.31) for ω̃ = q̃ = B̃ = 0 with the boundary

conditions Ai(0) = 0 , At0 = const. , Aµ(u = 1) = const. we find

A
a(0)
t (u) = uC

a(0)
t + A

a(0)
t (0), (3.32)

(1 − u2)A
a(0)′
j = C

a(0)
j . (3.33)

Thus the constant relating At to ∂5At is one. Now, if we substitute (3.24) into (3.29)

(keeping in mind we need only near horizon results to make statements concerning the

currents) we can relate C
a(0)
j to C

a(0)
t .

ωAa′
t + (1 − u2)qjA

a′
j − i(2πT )dabcB̃b

j [(1 − u2)Ac′
j ] = 0. (3.34)

In fact, we have a matrix equation,

Aa′
t =

1

ω
[qjδ

ac − i(2πT )dabcB̃b
j ][(1 − u2)Ac′

j ], (3.35)

that could be used to find A
(0)
j from A

(0)
t — though we need not do so here. It is important

to our argument that this matrix equation be non-singular. While we are not aware of any

generally applicable reason it should not be, we can always restrict our analysis to some

subgroup of the R-charge SU(4) for which this will be true regardless of the relative value

of q̃ and B̃. Thus, keeping to our assumption that ω̃ ∼ q̃2 ∼ B̃2, we have C
a(0)
j ∼ ω

q C
a(0)
t

and

A
a(0)
j ∼ A

a(0)
t

ω

q
ln

(

1 + u

1 − u

)

. (3.36)

Now we substitute At = A
(0)
t + A

(1)
t , Aj = A

(0)
j + A

(1)
j into equation (3.30), again exploit-

ing (3.24), and find

A
a(1)′′
t = 2q̃jA

a(0)′
j − dabcB̃b

jA
c(0)′
j . (3.37)

Hence,

A
(1)′′
t ∼ ω̃

(1 − u2)
A

(0)
t , (3.38)

so,

A
(1)
t ∼ ω̃A

(0)
t . (3.39)

Finally, invoking (3.29) again, we see

A
(1)
j ∼ A

(1)
t

ω

q
ln

(

1 + u

1 − u

)

. (3.40)

Thus, we can safely conclude that Fti|sh ≈ −∂iAt|sh.

– 8 –
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3.3 Summary

In this way, we find ourselves in possession of solutions satisfying (3.25) and (3.26). We now

see that defining currents as in (3.10) allows (3.12) to function as the continuity equation.

Application of (3.24) now results in a modified Fick’s Law:

ja = −D∇ρa + σ Ea + dabcB̃bρc. (3.41)

Here, D = 1
2π T is the diffusion constant, while χ = N2T 2

8 is the susceptibility and σ = N2T
16π

the conductivity [8]. As a result, (3.12) becomes a modified diffusion equation:

∂tρ
a − D∇2ρa + σ∇ · Ea +

(

N2

16π2χ

)

dabcBb · ∇ρc = dabc N2

16π2
Bb ·Ec. (3.42)

As noted at the beginning of this section, we cannot allow currents coupled to a gauge field

to be non-conserved lest the theory be inconsistent. Hence, no one of the fifteen R-charges

in the boundary theory will have all of the above terms in its diffusion equation. Charges

coupling to a gauge field will have an Ohmic term, but no E ·B term:

∂tρ
a − D∇2ρa + σ∇ · Ea +

(

N2

16π2χ

)

dabcBb · ∇ρc = 0. (3.43)

Anomalous charges will have no Ohmic term:

∂tρ
a − D∇2ρa +

(

N2

16π2χ

)

dabcBb · ∇ρc = dabc N2

16π2
Bb · Ec. (3.44)

4. Constitutive equations at weak coupling

Above, we demonstrated an anomalous modification of constitutive relations in a strongly

coupled conformal field theory with a gravitational dual. We now turn to theories at weak

coupling and argue that the same modification should also appear there, and explain its

physical origin.

To keep the discussion simple, let’s consider the theory of a massless fermion. To have

a hydrodynamic behavior at finite temperature the fermion should interact with itself, but

we shall assume the interaction to be arbitrarily weak. In accordance to the discussion in

the previous section, we turn on a background gauge field coupled to the fermion current,

Aµ = (0, 0, Bx, 0).

Let us emphasize again that Aµ is only a background gauge field; we do not include a

dynamical U(1) gauge field into the theory. The fermionic lagrangian for our theory is

Lψ = ψ̄γµDµψ, (4.1)

with ψ a four-component Dirac spinor and Dµ = ∂µ − ieAµ. The fermion hamiltonian

can be decomposed into the left- and right-handed parts (Below, σ is the vector of Pauli

matrices.)

Hψ = i

∫

d3x (ψ̄Lσ ·DψL − ψ̄Rσ · DψR). (4.2)
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Energy eigenstates of definite chirality can now be found which satisfy −iσ · DψR =

ERψR and iσ · DψL = ELψL. The solutions can be separated via

ψR,L(x, y, z) =

(

ϕR,L(x)

φR,L(x)

)

ei(kyy+kzz). (4.3)

We have two pairs of coupled first ordered differential equations for φ and ϕ which can be

written as a second order differential equation for any one of them. For example,

[

∇2
x̄ − e2B2x̄2 + E2 − k2

z + eB
]

φR = 0. (4.4)

where x̄ = x − ky/eB, Thus, we may write solutions for φR as,

φ2(x̄, n) =

(

eB

(n!)222nπ

)1/4

Hn

(√
eBx̄

)

e−
eB
2

x̄2

. (4.5)

Here, Hn(x) is the Hermite polynomial defined by

Hn(x) = (−1)nex2 dn

dxn
ex2

. (4.6)

The energy spectrum is ER(n) = ±
√

k2
z + 2neB, where n is the Landau level’s label. There

is, however, a subtlety at n = 0. The equation from which ϕR must now be determined is,

[kz − ER(n)]ϕR = i(∇x̄ + eBx̄)φR. (4.7)

When n = 0 this equation can only be solved if ER(0) = −kz. Thus, the energy eigenstates

with n = 0 are chiral: the right-handed excitations form a single branch E = −kz, while

the left-handed energy levels are E = kz.

In the vacuum, all negative energy states are filled. If one turns on a chemical potential

µ > 0 for the vector charge. then in addition to the Dirac sea all energy levels with

0 < E < µ are populated. For the n = 0 energy levels, this means left-handed fermions

with 0 < kz < µ and right-handed fermions with −µ < kz < 0 are populated. But as

all left-handed fermions have positive kz and right-handed ones have negative kz, the net

result is that there is a nonzero axial current that comes from the n = 0 states. One can

also check that the n 6= 0 states do not contribute to the axial current, since these energy

levels are not chiral: the contribution from left- and right-handed sectors cancel each other.

The effect survives at finite temperature.

The effect can be quantified most easily by considering a finite volume. If we place

the theory in a square box of side length L, with periodic boundary conditions, then the

momentum takes discrete values ki = 2
πni/L. Since the energy eigenvalues do not depend

on ky, there is a degeneracy of various ky states at each value of E(n). Specifically, we

require x̄ = 0 to be inside the box forces 0 ≤ ky < eBL, which means that each value of n

corresponds to eBL2/(2π) possible values of ky.

In thermal equilibrium the total current is the sum over all energy levels,

jz
R,L(x) =

1

L3

∞
∑

n=0

∑

kz

∑

ky

EkfR,L(n, kz, ky,x).
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Figure 1: A non-zero electric charge density gives rise to opposing fluxes of left and right handed

particles, culminating in jR−L ∝ −µB.

As mentioned above, states with n 6= 0 do not contribute to the axial current, since these

positive energy states exist in equal number with both signs of kz, regardless of chirality.

The function f is the Fermi-Dirac distribution function,

fR,L(kz , ky;T, µ) =
1

eβ [|kz|−µ] + 1
. (4.8)

After taking into account the degeneracy factor related to ky, summing over kz , and regu-

larizing by subtracting off the contribution of the Dirac sea, one finds

j5 = jR − jL = − e

2π2
µB, (4.9)

which coincides with the result obtained for the gravity dual theory in the previous section.

The same analysis we just used can also be applied in determining the electric current at

equilibrium, in the presence of a non-zero chemical for the axial charge µ5 and homogeneous

background B. Just as in the case of N = 4 SYM, we find that the constitutive relation of

a non-anomalous current is altered in the same manner as that of the anomalous current.

Specifically,

jEM = − e

2π2
µ5B. (4.10)

(See figure 2.) This is the exact same result obtained in [3].

5. Coupling independence

The presence of a new type of constitutive terms in the hydrodynamics of quantum field

theories, on the background of a homogeneous magnetic field, is to be expected on the

basis of simple symmetry arguments. These terms look like,

ja =
∑

c

Cabcj
0
b Bc .
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Figure 2: A chiral density composed of equal numbers of right-handed particles and left-handed

antiparticles gives rise to a flux of positive charge in the direction of B.

In the case of a strongly t’Hooft coupled, large-N gauge theory dual to an AdS5 super-

gravity, we see these terms arise naturally from the R-charge anomaly in a membrane

paradigm approach. In this strongly coupled case, the coefficients of the new terms are

simply determined from the anomaly coefficient appearing in the divergence equation, and

the susceptibility for the charge density in the new term. Specifically,

∂µjµ
a = η dabcE

b ·Bc

indicates that,

Cac = − η

χc
dabc .

(Since B is only present for one charge, C need not depend on the index c. Note also, that

while the order of indices in unimportant in the tensor structure of the anomaly, it is none

the less used in Cabc to indicate that we are considering the correction to the current, a,

that is proportional to the charge density, b. The factor η is dimensionless, and geometric

in origin.) In the case of arbitrarily weakly coupled QED at finite temperature, we see

the exact same contribution to currents arise from a local thermal equilibrium treatment,

consistent with [3]. Here, the currents arise as a direct result of the effect of the chiral

anomaly on the spectrum of the non-interacting theory. In this section we will formulate

an argument as to why the coefficients of the new terms should generally be determined as

they are in the two, disparate examples we have studied above. We’ll do this, by combining

linear response theory with hydrodynamics, and demanding that the hydrodynamics be

consistent with the zero frequency, zero momentum limit of a thermalized local quantum

field theory.

We use linear response theory to express currents and densities in terms of retarded two

point correlators, and perturbing source fields [9]. Then, we invoke symmetry arguments

to build hydrodynamic equations for the currents. The hydrodynamic equations will then
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function as equations for the retarded correlators. Solving these equations and setting

the energy to zero, we find that enforcing the correct behavior of the retarded two point

functions in the zero momentum limit constrains the coefficients of the constitutive terms

to be exactly as they are in our two specific cases above. Doing that we assume the theory

to contain no massless excitations that could cause the retarded two point functions to be

divergent at exactly zero energy and small momentum. Specifically, this will mean that

no Goldstone modes or massless, dynamical gauge fields can be present. The fact that the

zero momentum limit enforces this constraint indicates that these ”kinetic coefficients” for

the new terms are actually determined by equilibrium physics, as observed in [3].

We will work with a toy model containing two global charges, one vector and one

axial-vector, participating in an anomaly with the same background (vector) magnetic

field. Because there are only two global currents participating in the anomaly in this

system, we can simplify our notation via CA = CAVV and CV = CVAV. The same analysis

can be easily extended to a system with a more general set of currents. More will be said

about this at the end of the section.

LRT gives the response of a current to the presence of a source field, up to linear order

in the source, as

δjµ
a (ω,p) = [Πµν

R (ω,p)]abA
b
ν(ω,p).

Here,

[Πµν
R (x − y)]ab = θ(x0 − y0)〈[jµ

a (x), jν
b (y)]〉,

is the retarded current-current correlator in the absence of the perturbation, and

δjµ
a = 〈jµ

a 〉|A − 〈jµ
a 〉|0,

is the difference between the current’s expectation value in the presence, and absence of

the source. Here, we will employ a source for the temporal component of our vector current

only. For consistency with the rest of the paper, we will use the notation, ρa = δj0
a in this

section, thus:

ρV = [Π00
R ]VVAV

0 ; ρA = [Π00
R ]AVAV

0 .

Substituting the LRT charge fluctuations into our modified diffusion equations gives,

(∂t − DV∇2)ρV = −σV∇ ·EV − CVBV · ∇ρA, (5.1)

(∂t − DA∇2)ρA = −CABV · ∇ρV + ηdAVVBV ·EV. (5.2)

Since EV = −∇A0, passing to momentum space allows us to drop a factor of Ã0(ω,p)

from each term in both equations, leaving us with equations for the current-current corre-

lators.

(iω − DVp2)[Π̃00
R ]VV = σVp2 + iCVp ·BV[Π̃00

R ]AV, (5.3)

(iω − DAp2)[Π̃00
R ]AV = iCAp ·BV[Π̃00

R ]VV − iηdAVVp · BV. (5.4)

Solving for both correlators while keeping (for consistency) only terms up to linear order

in the magnetic field, we obtain

[Π̃00
R ]AV =

iCAp · BV[σp2 − η
CA

dAVV(iω − DAp2)]

(iω − DVp2)(iω − DAp2)
, (5.5)
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and,

[Π̃00
R ]VV =

σp2

(iω − DVp2)
. (5.6)

We are now equipped to ask what zero momentum behavior the hydrodynamic equa-

tions instill in the retarded correlators, and to demand that this be consistent with the

known behavior from finite temperature field theory. First, we will take ω → 0 and

note that in this limit, the retarded correlator becomes an analytic continuation of the

euclidean time (or Matsubara) two point correlator [9]. Now, taking p → 0 we note that

limp→0[Π̃
00
R ]AV is well defined. To examine the momentum dependence of our hydrodynamic

[Π̃00
R ]AV it will be convenient to separate the momentum into components perpendicular

and parallel to the magnetic field. Writing B = |BV| we find,

[Π̃00
R (0,p)]AV =

(

p‖

(p2
‖ + p2

⊥)

)

iCAB(σ + η
CA

DV)

DVDA
. (5.7)

Observe, that if we take p → 0 along a contour that keeps the ratio p2
⊥/p‖ constant, the

value of limp→0[Π̃
00
R ]AV will be entirely dependent upon what the value of p2

⊥/p‖ is. Thus,

the limit is not well defined, unless the numerator itself is zero. The only way this can

happen in the context of our hydrodynamic equations, is for the following equality to hold:

CA = −η
DV

σV
dAVV.

Taking the same limits for Π̃00
R ]VV returns the susceptibility, as it should, and gives no

information about CA or CV. The constant CV can be found by repeating the same steps

using only a non-zero A0
A, and examining Π̃00

R ]VA.

As mentioned earlier, this analysis follows through for more general sets of vector and

axial-vector currents as well. The currents are fluxes of global charges, of the form

jµ
a = ψ̄iγ

µV ij
a ψj , jµ

x = ψ̄iγ
µγ5A

ij
x ψj ,

where Va and Ax are the generators, in flavor space, of the symmetries giving rise to each

charge. (We will use early Latin indices for vector current generators, and late Latin

indices for axial current generators, for clarity in what follows.) In general, we can expect

[Va, Vb] 6= 0, [Ax, Ay] 6= 0, and [Va, Ax] 6= 0. The applied magnetic field couples only to one

of the vector charges, which we specify here by the index b. In this case, symmetry will

demand that new constitutive terms have the forms,

jx =
∑

b

CxbcρbBc , ja =
∑

c

CazcρzBc.

The equations of motion to be solved will now be matrix equations in the space of the

global charges denoted by {x,a}. Again, one finds that in order for the infrared limit of

the two point functions to behave properly,

Cxbc = −ηdxbcχ
−1
b ,
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must hold for each possible value of x, and c, while

Cazc = −ηdazcχ
−1
z ,

holds for each a and z, in the presence of Bc. This line of argument applies regardless of

the coupling strength of the theory under consideration.

6. Quark gluon plasma in magnetic field

It would be nice to get a look at the kind of effect our modified hydrodynamics could have

in a real physical system. One case in which transport behavior in a magnetized system

with anomaly may be of interest is hot QCD in a strong magnetic field [12, 13].

We will take a look at chiral QCD with three massless flavors, in the presence of a

homogeneous background U(1)EM magnetic field. This theory possesses an axial anomaly

coupling the electromagnetic (Q), baryon (b), and chiral EM (5) currents. To be explicit,

we write these currents in terms of the diagonal generators of SU(3)f :

jµ
Q = eψ̄iγ

µQijψj (6.1)

jµ
5 = ψ̄iγ

µγ5Qijψj (6.2)

jµ
b = ψ̄iγ

µbijψj (6.3)

Where,

Q =
1

3







2 0 0

0 −1 0

0 0 −1






; b =

1

3







1 0 0

0 1 0

0 0 1






; ψ =







u

d

s






.

There are two more currents diagonal in flavor which may be defined as

jµ
λ = ψ̄iγ

µ
λijψj , jµ

λ5 = ψ̄iγ
µγ5

λijψj ,

with

λ =
1

2







0 0 0

0 1 0

0 0 −1






.

These currents have hydrodynamic behavior, and are anomalous, but their hydrodynamic

equations do not couple to the other currents, since Tr[λλQ] = 0. Thus, we ignore

them. The anomaly structure generates non-vanishing three point functions of the types,

〈jν
Qjλ

Qjρ
5 〉, and 〈jν

Qjλ
b jρ

5 〉.
In order that we be able to apply the methods of the last section, it is important that

we take the system to be above the temperature at which the chiral phase transition takes

place, so that no pion modes will be present to couple to the chiral current. Furthermore,

we must treat the U(1)EM coupling as arbitrarily small, so the effects of dynamical gauge

fields will be negligible. Corrections due dynamic electromagnetic fields would be of order
αEM

αs
. Under these conditions, the electromagnetic current is diffusive, rather than ohmic.
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Leptons are considered as absent. Thus, all three currents are carried only by quarks, and

will have identical diffusion constants.

If we apply the methods of the last section to this model, and again work only to

first order in the applied magnetic field, we find the following set of coupled hydrodynamic

equations. (To keep notation tidy, we will use B′ ≡ eB
2π2χQ

where B is the standard magnetic

field.)

(∂t − D∇2)j0
Q = −2

9
B′ · ∇ j0

5 , (6.4)

(∂t − D∇2)j0
5 = −2

9
B′ · ∇ j0

b − 2

9
B′ · ∇ j0

Q, (6.5)

(∂t − D∇2)j0
b = −2

9

χQ

χb
B′ · ∇ j0

5 . (6.6)

We take the electric field to be zero here. Thus all three charges are conserved. Passing

to momentum space, we find a relatively simple eigenvalue equation for the dispersion

relations,






(iω − Dbq
2) 0 −i2

9p · B′

0 (iω − DQq2) −i2
9p · B′

−i2
9

χQ

χb
p ·B′ −i2

9p ·B′ (iω − DQq2)













ρb

ρQ

ρ5






= 0.

Clearly, for modes in which the momentum is perpendicular to the magnetic field, the

dispersion will be purely diffusive. This will also be the case, when B
T 2 ¿ q

T , regardless

of orientation. Modes with momentum parallel to the magnetic field will exhibit more

interesting behavior. Specifically we find the new (normalized) eigenmodes to be,

ρ1 ≡
√

1

1 + χQ/χb

(

− 1

χQ/χb
ρb + ρQ

)

, (6.7)

ρ2 ≡ 1
√

3 + (χQ/χb)

(

ρb + ρQ +
√

1 + (χQ/χb)ρ5

)

, (6.8)

ρ3 ≡ 1
√

3 + (χQ/χb)

(

−ρb − ρQ +
√

1 + (χQ/χb)ρ5

)

, (6.9)

with dispersion relations,

ω1 = −iDp2, (6.10)

ω2 = −iDp2 − 2

9

√

1 + (χQ/χb)p · B′, (6.11)

ω3 = −iDp2 +
2

9

√

1 + (χQ/χb)p · B′. (6.12)

Frequency eigenmodes are a mixture of currents defined in equation (6.1)–(6.3), and the

eigenfrequencies now have a real component with the same form as the dispersion of Alfven

waves. (The asymptotic value of χQ/χb = 2/9 may be substituted in, if exact numbers are

desired.) An interesting effect of this result, is that an over density of ρb + ρQ will give rise

to a dissipationless flow of this charge along the direction of the magnetic field.
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7. Conclusions

We have revisited the familiar “level crossing” picture of the impact of a chiral anomaly on

the non-interacting limit of a weakly coupled gauge theory. There, we saw that the currents

participating in the anomaly are altered in a certain way, in the presence of a homogeneous

magnetic field: ja = − e
2π2 B

bµc. We have examined the hydrodynamics of a strongly

coupled (and strongly t’Hooft coupled) plasma using the Gauge-Gravity duality as a tool.

There, we saw the R-symmetry currents of large-N , N = 4 SYM receive a new term in their

constitutive relations, due to their participation in the anomaly: ja = − N2

16π2χc
dabcBbρc.

There is a general symmetry argument for the inclusion of such terms in the constitutive

relations of any anomalous local quantum field theory. In the absence of massless modes

coupling to the relevant currents, we have a means of determining the coefficients of these

terms by demanding consistency between hydrodynamics and linear response theory in the

zero momentum limit. Thus, we conclude that, in the presence of static magnetic fields,

the hydrodynamic constitutive relations of an anomalous QFT receive a contribution, of

the form dabcBbρc with a coefficient of 1
χc

times a geometric factor that can be read off

from an anomaly equation. This holds regardless of coupling strength, and so long as their

are no massless dynamical modes coupling to the currents involved.

If this LRT treatment can be extended to systems with massless modes, it would

be possible to consider anomalous contributions to magnetohydrodynamics. This is an

interesting topic for future work, that may significantly broaden the applicability of the

considerations raised in this paper.
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